Showing posts with label Renault Zoe. Show all posts
Showing posts with label Renault Zoe. Show all posts

Saturday, 22 April 2023

Barely Charging Network: Maybe we can't make to Fully Charged in our Zoe EV.

 Introduction

We're planning to go to the Fully Charged Live show in Farnborough in late April. We've had our 22KWh Renault Zoe for over 6 years. Our Zoe is AC-only charging, but can charge at 22KW, which means that we can travel decent distances - if 22KW charging posts are available.

Six years ago, the Ecotricity-sponsored Electric Highway chargers along UK motorways provided a relatively excellent means of getting around the country by AC charging. It (ironically) helped that even though there were few chargers, there were also few EVs, so there wasn't much competition. Today, most EVs charge via DC (CCS, though there are a few Leaf cars around that still charge via CHaDeMO) so there still isn't much competition for AC chargers.

Unfortunately, the 22KW AC Charging network in the UK has grown and simultaneously been trashed over this period. It is easy to describe why:

  • The Electric Highway has been replaced by GRIDSERVE, which initially took out all the 22KW charging facilities and replaced them with nothing. Then they installed '22KW' charging points, which never charge at the full rate. GRIDSERVE do not seem to understand that spending 2hours charging up at 11KW or less is ABSOLUTELY UNACCEPTABLE. Bosses at GRIDSERVE, a message to you: why would anyone spend 2 hours charging up at your charging points? I mean, literally anyone? Your AC market is literally ZERO people who would want to charge at your AC charging points. No-one! ZERO!!!!!!
  • Open competition against a total lack of key aspects of regulation mean that there are literally dozens of different charging apps you need to download onto your phone in order to charge. It was OK, when it was only the Electric Highway - it's not OK, when it's dozens of charging apps. And they are all variants on exactly the same thing. We only need one.
  • Many, many, MANY charging points are broken. Currently we have to plan for at least 2 alternatives to the main charging point we want to go to. Why are there no requirements for charging point maintenance? It can't all be done remotely, e.g. a software upgrade won't fix slow BP chargers that have failed due to water ingress.
  • Many charging points advertised as 22KW simply aren't. They don't charge faster than 11KW. For example, the ones at Bicester OX26 6BP. In this case, because I know they won't charge up at 22KW, there is no point in charging at them. YOU HAVE WASTED MONEY INSTALLING THESE CHARGERS. But what's worse is that because we no longer know if a proprietary 22KW charger will charge at 22KW, we can't risk using any of them, even by a different company, anywhere in the UK, unless there is proof that it's possible to actually charge at 22kW.
As it turns out, some companies' chargers really do work as advertised: BP Pulse (formerly Charge Master), Pod-Point and Swarco E-connect do work at 22kW (though some are broken).

The Plan

Getting to Farnborough involves going down the M40, where we've had problems charging a year ago. I can't see that it's any better now. There are GRIDSERVE charging points at Cherwell services after 57 miles, so that's out, because they won't charge at 22KW. There's nothing reliable that's close to that.

However, there's some charging points at Kidlington which is at about 67 miles:
Of them, only a single charging point is acceptable. The top blue one is out of the way; the remaining blue one I can't be sure about; the second BP one is out of order; the bottom one is GRIDSERVE, which don't charge at 22kW. That's a failure rate of 80%.

Moving on: there's a SWARCO E-Connect at OX1 4NA in Oxford, that's about 76.7 miles away, at the practical limit for the car. SWARCO seem to work. Then there's Westgate in Oxford where there's several 22KW charging points, but I don't know the company. Perhaps I can check.

So, this covers the mid-way charging, literally about half way there. Then we get to the Fully Charged Show Live at: Farnborough International Exhibition & Conference Centre. Here, I expanded the criteria to 7KW charges and even so, there seems to be only a few charging points.. like how is this viable given the number of people who are likely to go there by EV?



If this turns out to be viable, we then need to charge again at Kidlington on the way back. All of it is at the boundary of practicality.

Conclusion

Underneath all of these woes is a simple reason: Our government, which has utterly failed to provide regulations that ensure a working charging network. This is 'liberated' free enterprise in action, a totally dysfunctional industry, free from any sense of responsibility to its actual users.

It would not have been hard to regulate it: the bullet points above describe what need to be done:

  • Chargers should work as advertised, 22kW should mean exactly that, or a range of charging rates if uncertain.
  • Every Charging point should be registered on Zap-map (or a national body) as it's installed, along with its capabilities.
  • There should be at most one charging app to cover all charging points even from different companies. There should be access to contactless charging on all motorway charging points.
  • Maintenance should be swift, again, it should be provided at a national level.
  • Support should always be available 24/7 from a single national body.
  • Charging locations should be distributed according to the need to cover the country, not just installed where the market penetration is highest.
  • Adequate 22kW charging coverage should be supported until 80% of the cars that supported it are no longer on the roads.
Let's finish with this, because it is, surprisingly, not hard to achieve. Consider: the surface area of England: 130,279km2. A viable charging network would need a charging point every 80km, or a charging point every 692km2. So, we need: 188 x 22kW charging points to cover the country, a cost of about £188K.

In the meantime, I'm not sure we'll be able to make it to the Fully Charged Show from Birmingham in our Zoe.



Saturday, 6 July 2019

Let the EVs Take the Strain

A recent BBC article says EVs won't solve congestion problems. It's yet another negative headline about EVs to follow from yesterday's negative EV headline where they said EVs were falling in sales for the first month in whatever (when in fact BEV sales had gone up 67%). They even go to the trouble of showing a picture of a rare EV, an 8 year old early prototype Smart ED TwoFour, rather than - say EVs hundreds of times more popular, to get across the idea that EVs are toys. Next week, watch out for the Tesla-bashing article ;-) and no mention of how sales of real EVs in the EU, the US and globally are rocketing.

Similarly, this article uses a bit of truth to hide a bigger lie. In fact EVs will go quite a long way to solving congestion.

Car Use is Falling

Car use is already going down in some parts of the UK, mostly because in London, they're not needed much and elsewhere because insurance for young drivers is prohibitive.
But actually, the nature of EVs will themselves radically change our vehicle usage, primarily because they have so few moving parts and batteries last much longer than originally expected (and will get several times better), to get sufficient wear and tear we're going to have to drive them much more often.

ICE Drives Congestion

The problems we see with urban vehicles are problems relating to ICEs themselves. For example, you can't have a filling station at everyone's house - it's far too dangerous and far too expensive! ICEs force us to place filling stations as widely as can be tolerated and because the effort taken to fill up (compared with plugging in an EV); this in turn forces infrequent filling; large tanks and very long ranges.

But long ranges themselves have the side effect of increasing our journey lengths which impacts everything: distance travelled to shop, to our workplaces, to schools and hospitals and all this increases traffic.

EV Transformations Will Blow Our Minds

EVs will change this radically. We'll have to share cars to get the wear and tear out of them and because charging will become ubiquitous (think every forecourt where your car might hang around); we'll need cars with much shorter ranges on average than even the first generation of EVs: think 10KWh or even 5KWh for the majority of cars and in turn two person EVs will dominate for the vast majority of journeys. But in turn, because we can charge easily, we can expect journeys to shorten too.

Remember in this model, people don't own their cars as much.

Why will people choose tiny, 'under-capacity' cars? It's simple, they'll be much cheaper to build, sell and drive! My Zoe (22KWh) gets about 4 to 4.5 miles per KWh at maybe 12p/KWh. Given a gallon of petrol (4.5L) = 4.5*£1.25 = £5.63, I get 5.63/0.12*4.5 up to 210mpg running costs.

But a Renault Twizy (a 2 person EV with a 6.7KWh battery) will get 6 to 8 miles per KWh, equivalent to 300 to 400mpg running costs.

Given a typical day's travelling in the UK is only about 10 to 20 miles, about 3KWh, that's only half a Twizy's battery. And considering the sheer number of charging points there will be, the average needed journey between charges will only be 5 to 10 miles, just 1.5KWh.

On that basis, a future EV with a 5KWh will seem ample, even though right now, all the talk is about 50KWh to 100KWh batteries.

So, EVs will go a long way to reduce congestion in themselves owing to the different driving model.

Saturday, 13 January 2018

EV Intentionality

We have a cute Renault Zoe EV, called Evie as it happens, and when I get a chance at traffic lights I slip it into non-ECO mode so I can leave all the hotshot BMWs / Audis / Mercedes and Jaguars in the dust as I zoom away (within the speed limit of course :-) ) !

EV Intentionality is about driving and thinking EV in such a way as to convey the genuine benefits of the technology. They're the rapidly approaching future (fuel cell cars aren't) and we're in competition with the Fossil Fuel industry who are orders of magnitude bigger than us (until their stranded assets catch up with them ;-) ).

Friends frequently ask me if it's better to (a) buy an EV now, (b) buy a hybrid or (c) drive their current car into the ground. (c) Seems like common sense, but actually it's worse for the environment and your pocket. This is why (assumes average ICE car driving 12703Km/year at 120g/Km):
The way to look at it is to add up your emissions over the long-term. Put simply, buying an EV involves a one-time emissions hit (the production of the car, including the extraction of its raw materials) and after that, it can be emissions-free. This assumes you'll charge it on renewable energy, because we do.

Therefore every fossil fuel mile you add now, adds to your final emissions. By 2040, the EV bought in 2018 still has the same emissions, but the one bought in 2022, just 4 years later resulted in another 60% emissions and the one kept going until 2040 resulted in nearly 4x the emissions - before the EV was eventually bought).

Let's consider what happens if you buy a Hybrid (at 100g/Km) or a Plug-in Hybrid (PHEV) (at 45g/Km) or an EV vs driving the same ICE car for as long as possible:

Basically, the EV results in lower total emissions than continuing with your ICE by 2024 (in 6 years), the PHEV manages it by 2027 (in 9 years), and the Hybrid by 2040 (22 years), in other words, a long time after its life expectancy. Looking at the life expectancy (on average by 2032, given our start date); by then, the PHEV's total emissions are 75% more than the EV, but the Hybrid car has more total emissions than the ICE. In other words - you're very unlikely recoup the manufacturing emissions by buying a new Hybrid car compared with driving an existing ICE into the ground, though of course it'll be less emissions than buying a new ICE.

From an intentional viewpoint though we want to promote the transformation of transport. Consider:

  • Every fossil fuel mile you drive now, is a donation to the fossil fuel industry. They're not a charity. The first question to ask is "how much of my money do I want to give them?" If it's nothing (which is the right answer), then your basic decisions are made for you.
  • EVs will come down in price over time and improve faster over time. But the rate of this depends upon how quickly we switch. If we takes decades to go clean the rate of improvement will be much slower. It's what's called a market signal, which is a vote. You put your money in the market you have faith in and the market responds accordingly.
  • EV production will get cleaner over time as industrial practices decarbonise, but this will happen much slower than we can switch to EVs. By switching to EVs and running them on clean energy, we send another market signal, that we want a carbon-free lifestyle sooner. This is another market signal.
And given there seems to be at least one car advert on every commercial break on TV, we're going to have to be 100% intentional for the foreseeable future :-) !

[Edit: Graphs updated to include manufacturing footprints for EVs and ICE cars based on This Guardian Article. The article provides only EV and ICE footprints; I've estimated a Hybrid and PHEV manufacturing footprints based on typical CO2 emissions for the technologies on the basis that the battery technology and/or drivetrain is what contributes to the higher manufacturing emissions in proportion to the battery technology provided. In addition, I've assumed that manufacturing footprints will fall linearly until they fully decarbonise by 2070. These are provisional calculations until I get better information. Similarly, the study used to estimate EV manufacturing at 8.8Tonnes may assume a Tesla Model S as the standard EV, and that will not be representative across the globe - and it might not even be true for the Tesla Model S.]